Find the equation of circle with centre (1,-2),touching the line 4y-3x=5 using x²+y²-2xh-2ky+c as the general formula (answer=25x-50x+100y-131)?

[ad_1]

##25x^2+25y^2-50x+100y-131=0##

Firstly we can ascertain the standing-upright interspace of the unswerving row ##4y-3x=5## from character ##(h,k)=(1,-2)## by using the equation;

distance##=|ah+bk+c|/sqrt(a^2+b^2)##

The esteem of ##a##, ##b##, and ##c## can be obtained from ##4y-3x=5##;

##4y-3x=5##

Rearrange, ##3x-4y+5=0##

##a=3## , ##b=-4## and ##c=5##

And we allure get;

distance##=|3(1)+(-4)(-2)+5|/sqrt((3)^2+(-4)^2)##

distance##=16/5##

You allure then symbol out that the interspace##=16/5## is the radius, ##r## of the foe. By substituting ##r=16/5## and ##(h,k)=(1,-2)## , you can use the equation;

##(x-h)^2+(y-k)^2=r^2##

##(x-1)^2+(y+2)^2=(16/5)^2##

Expand and you allure get;

##x^2-2x+1+y^2+4y+4=256/25##

All esteems expatiate by ##25##;

##25x^2-50x+25+25y^2+100y+100=256##

##25x^2+25y^2-50x+100y-131=0##

Show over

[ad_2]
Source add