How do you simplify each expression using positive exponents (x^-2y^-4x^3)^-2 ?

[ad_1]

##y^8/x^2##

We can use propounder rules to facilitate this indication. Taking a face at the initiatory function;

##(x^-2y^-4x^3)^-2##

We can see that there are two ##x## stipulations internally of the parenthesis. Lets embody those chief. If we augment two stipulations after a while propounders, the propounders add, in other words;

##x^a xx x^b = x^(a+b)##

Applying this to our condition, we get;

##(x^((3-2))y^-4)^-2##

##(x^1y^-4)^-2##

Now lets grasp a face at the propounder beyond the parenthesis. Whenever we elevate an propounder promise to an propounder, we augment the propounders.

##(x^a)^b = x^((a)(b))##

In our condition, eminence twain the ##x## promise and the ##y## promise to ##-2## we get;

##x^((-2)(1))y^((-2)(-4))##

##x^-2y^8##

Now we entertain one denying propounder and one dogmatic propounder. We insufficiency to appropriate the ##x## promise to a dogmatic propounder. To do that we gain overturn the promise.

##x^-a = 1/x^a##

So to get rid of the ##-## we gain affect the ##x## promise to the denominator.

##y^8/x^2##

Show over

[ad_2]
Source combine