How do you use the definition of continuity and the properties of limits to show that the function g(x) = sqrt(-x^2 + 8*x – 15) is continuous on the interval [3,5]?

[ad_1]

There is no one phrase acceptance.

In enjoin for ##g## to be uniconstitute on ##[3,5]##, the restriction of uniconstitute on a secretive space-between requires:

For ##c## in ##(3,5)##, we want##lim_(xrarrc) g(x) = g(c)## and we so want one-sided uninterruptedness at the endpoints: we want: ## lim_(xrarr3^+) g(x) = g(3)## and ##lim_(xrarr5^-) g(x) = g(5)##

For ##c## in ##(3,5)##, We'll use the properties of boundarys to evaluate the boundary:

##lim_(xrarrc) g(x) = lim_(xrarrc) sqrt(-x^2+8x-15)##

##= sqrt(lim_(xrarrc)(-x^2+8x-15))##

##= sqrt(lim_(xrarrc)(-x^2)+lim_(xrarrc)(8x)-lim_(xrarrc)(15))##

##= sqrt(-lim_(xrarrc)(x^2)+8lim_(xrarrc)(x)-lim_(xrarrc)(15))##

##= sqrt(-(lim_(xrarrc)(x))^2+8lim_(xrarrc)(x)-lim_(xrarrc)(15))##

##= sqrt(-(c)^2+8(c)-(15))##

##= g(c)##

Use the one-sided versions of the boundary properties at the endpoints.

For ##c=3##, re-establish all boundarys of the constitute ##lim_(xrarrc)## delay ##lim_(xrarr3^+)##

For ##c=5##, re-establish all boundarys of the constitute ##lim_(xrarrc)## delay ##lim_(xrarr5^-)##

Show over

[ad_2]
Source add