# What is the derivative of y=arctan(4x)?

##4/(16x^2 + 1)##

Don't use plagiarized sources. Get Your Custom Essay on
What is the derivative of y=arctan(4x)?
Just from \$13/Page

Explanation
First recall that ##d/dx[arctan x] = 1/(x^2 + 1)##.

Via the :

1.) ##d/dx[arctan 4x] = 4/((4x)^2 + 1)##

2.) ##d/dx[arctan 4x] = 4/(16x^2 + 1)##

If it isn’t clear why ##d/dx[arctan x] = 1/(x^2 + 1)##, continue reading, as I’ll walk through proving the identity.

We will begin simply with

1.) ##y = arctan x##.

From this it is implied that

2.) ##tan y = x##.

Using implicit differentiation, taking care to use the chain rule on ##tan y##, we arrive at:

3.) ##sec^2 y dy/dx = 1##

Solving for ##dy/dx## gives us:

4.) ##dy/dx = 1/(sec^2 y)##

Which further simplifies to:

5.) ##dy/dx = cos^2 y##

Next, a substitution using our initial equation will give us:

6.) ##dy/dx = cos^2(arctan x)##

This might not look too helpful, but there is a trigonometric identity that can help us.

Recall ##tan^2alpha + 1 = sec^2alpha##. This looks very similar to what we have in step 6. In fact, if we replace ##alpha## with ##arctan x##, and rewrite the ##sec## in terms of ##cos## then we obtain something pretty useful:

##tan^2(arctan x) + 1 = 1/(cos^2(arctan x))##

This simplifies to:

##x^2 + 1 = 1/(cos^2(arctan x))##

Now, simply multiply a few things around, and we get:

##1/(x^2 + 1) = cos^2(arctan x)##

Beautiful. Now we can simply substitute into the equation we have in step 6:

7.) ##dy/dx = 1/(x^2 + 1)##

And voilà – there’s our identity.

## Calculate the price of your order

550 words
We'll send you the first draft for approval by September 11, 2018 at 10:52 AM
Total price:
\$26
The price is based on these factors:
Number of pages
Urgency
Basic features
• Free title page and bibliography
• Unlimited revisions
• Plagiarism-free guarantee
• Money-back guarantee
On-demand options
• Writer’s samples
• Part-by-part delivery
• Overnight delivery
• Copies of used sources
Paper format
• 275 words per page
• 12 pt Arial/Times New Roman
• Double line spacing
• Any citation style (APA, MLA, Chicago/Turabian, Harvard)

# Our guarantees

Delivering a high-quality product at a reasonable price is not enough anymore.
That’s why we have developed 5 beneficial guarantees that will make your experience with our service enjoyable, easy, and safe.

### Money-back guarantee

You have to be 100% sure of the quality of your product to give a money-back guarantee. This describes us perfectly. Make sure that this guarantee is totally transparent.

### Zero-plagiarism guarantee

Each paper is composed from scratch, according to your instructions. It is then checked by our plagiarism-detection software. There is no gap where plagiarism could squeeze in.

### Free-revision policy

Thanks to our free revisions, there is no way for you to be unsatisfied. We will work on your paper until you are completely happy with the result.